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and

Douglas J.Neill**

Northrop Corporation,Hawthorne, California

Introduction

This report summarizes the survey of the practical applications of structural

optimization methods in the U.S. aerospace industry. Since there was an excellent review 1 on

applications of optimization to flight vehicles prior to 1980, we limit this summary to typical

accomplishments during the 1980s. The examples presented are based on the inputs provided

by experts in the U.S. Aerospace industry. This report was prepared based on the belief that,

while proprietary software might not cross the company boundaries, basic philosophy and

technology can and should be shared to minimize the risk and to put future effort in proper

perspective.
The most notable difference in the '80s is the more widespread acceptance of

structural optimization as one of the design tools that support practical structural design. The

period in which design engineers kept a "suspicious and respectable distance" from structural

optimization may finally be ending. Another significant difference is the development of
large scale software tools for production application. Since most of these software tools

started appearing in the last half of the 1980s, we are looking only at the beginnings of

structural optimization's real impacts on aerospace structural design.
Introduction of new tools in the industrial design environment is by no means simple.

It requires the dedicated effort of motivated groups of foresighted engineers to obtain

management support to apply new tools within the tight time and resource constraints.
Theoretical advancements and the development of software tools by both commercial

vendors and by the government are not enough for applications in a production environment.

The tools and methodology must be integrated in the existing engineering procedures

effectively, without causing abrupt disturbances to the organizational structure. Often, these

optimization methods, especially the large scale, interdisciplinary tools, require some
modifications to the existing engineering processes. Overcoming tradition and inertia under

production schedule restraints is a very difficult task. Nonetheless, these methods, and the
tools that embody them, are beginning to be used.

Experiences gained in optimization tool development in the '70s and early '80s led to

the recognition of the fundamental differences between the implementation of analysis and
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design capabilities. In creating an analysis model, we reduce a wide variety of objects into

simple concepts so that the differential or integral equations can be solved conveniently.

Frequently, objects irrelevant to the responses axe over-simplified or even discarded in this

abstraction process. In design, on the other hand, we move in a different direction, selecting

appropriate concepts, components, materials, sizing, etc. from a large number of varieties, to
achieve desirable characteristics in the final structural system. Factors that provide direction

in this selection process include: company tradition, product lines, design manuals or

standards, inputs from production, maintenance or sales departments and the background of

responsible engineers. For these reasons, a computerized design process must be tailored to

the specific environment of each company.
Currently, the two most important aspects of this tailoring are seamless incorporation

of structural optimization in the overall aerospace design/production process and multi-

disciplinary integration aimed at ultimate performance optimization of the final products.
Notable and subtle differences among companies are observed in the integration of structural

optimization into the engineering process, and each form is justified in its own right. In fact,

there may not be one best implementation plan universally applicable to every company;

instead each organization has had to be creative in finding an approach to satisfy their

specific requirements. In each case, responsible engineers have had to take some risks to

open up new frontiers.
The material compiled in this report represents some, but by no means all, such

endeavors. The examples both provide insight into the individual philosophies and
stimulation for more widespread applications of structural optimization. Even though the

cases cited in this report may look similar, careful readers would notice subtle but important

differences in their basic philosophy as well as in their technical approaches. This report was

loosely divided into six sections:
I. Modern and Innovative Applications of FASTOP and TSO

H. Integration of Conventional and New Technology

III. Aggressive Applications of New Tools
IV. Structural optimization in a Multidisciplinary Design System

V. Other Developments

VI. Concluding Remarks
The boundaries of the first four sections are fuzzy and may not even be labeled correctly, but

cases are categorized into groups simply to make this report readable.

L Modern and Innovative Applications of FASTOP and TSO

I. 1. Grumman's COGS and Applications

The most notable contribution made by Grumman in structural optimization is the

development of the FASTOP (Flutter and Strength Optimization Program) computer code
under the support of USAF during 1973-1981. Based on the structural design tradition

accumulated previously, Grumman used the experiences of FASTOP development and its

applications to build an integrated structural design system. 2 Development of COGS

(.C,,.Qrnprehensive Graphics _.ystem), an in-house structural design/analysis system, began in
1975 and continued throughout the 1980s. The three primary components of COGS are:
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DESIGN USAGE CYCLE

3 View Diagram of
Candidate Vehicle

Data Required
for Proposal

Final Drawing to
Manufacturing

Upgrade
Requirements

Phase 1

(Conceptual Design)

Phase 2 Preliminary Design
(Phase A. B. C, etc.)

Phase 3
Final Design

Phase 4 Ir- - - Production

I Phase 5 Vehicle Usage!Fleet Service)
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Design Modifications

MAJOR APPLICATIONS OF
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OMV, NPBIE, CWNT,

SSR, BSTS, X-29

TypicalApplications
CWNT, MI61 Hydrofoil,

X-29, DeHavillandDash 8
F-14A, Transcowl,

V22 Empenage,JSTARS,
C17 ControlSurface

TypicalApplications
F-14D, E-2C, Gulfstream-III

A-6F, C-2A, Mohawk,
EA-6B, X-29 Spin Chute

Figure 1 Six Phases in the Design-Evolution Cycle

ASTRAL (a finite element analysis program), COMAP (a matrix manipulation language) and
a suite of interactive graphics packages. Important portions of FASTOP were incorporated
into COGS by 1983. To provide practical support in the production environment, COGS was
fully integrated with interactive computer graphics tools such as CADAM, CATIA and
PATRAN. The roles of COGS in the product development cycle is outlined in Figure 1. For

the overall, system-level sizing, COGS uses an optimality criteria approach to work with
control effectiveness, divergence avoidance, deflection constraints, frequency constraints,
flutter constraints and some combinations of these requirements. For strength requirements,

internal loads obtained by the finite element analysis are provided to the resizing procedure
that recognizes detailed design parameters pertinent to the type of construction employed.
This process is schematically shown in Figure 2.
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Figure 2 Structural Component Resizing Process

The finite element analysis and resizing cycle normally converges in three to five cycles.

Since the resizing scheme utilizes the detailed properties to perform sophisticated component

sizing, this scheme results in a realistic and usable final design.
Regarding the organizational impacts of multidisciplinary design optimization

(MDO), Grumman recognizes that the software tool is not sufficient in a production

environment. Other important factors come into play when an MDO tool is applied. These
factors include the control of the (now multidisciplinary) analytical models and the proper

representation of manufacturing and production requirements within those models. To
facilitate this difficult extension to the traditional engineering design process, necessitated by

the use of MDO methodologies, Grumman plans to collocate integrated product teams

including analysts, designers and manufacturing engineers.

•Application 1:X-29 Forward-Swept'Wing Demonstrator Aircraft

In 1977, DARPA initiated several Air Force-monitored studies into forward swept

wing technology. Interest in the high maneuverability provided by forward swept wings for

modem fighter aircraft had been rekindled by Krone's study 3 in 1975, in which he showed

that the divergence requirements could be met with substantially lower weights than would

be required in aluminum designs by properly tailoring the stiffness using composite
materials. Grumman took this opportunity to utilize its newly developed structural

optimization technology in the design of a minimum weight, forward swept wing. 4
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Essentially,this effort entailed a parametric study to find optimal kick angles through

a series of sizing optimizations to satisfy critical divergence requirements. Preliminary

studies covered a pivoted, vairable sweep wing of balanced and unbalanced laminates of

ambitious materials including graphite/epoxy, boron/epoxy and hybrids. The optimum kick

angle was sought by calculating the minimum weight of the wing while rotating the spanwise

ply forward by finite increments. The basic approach was to add materials to the fully
stressed design by selecting the most favorable plies for divergence suppression.

As the design process proceeded from feasibility study to the preliminary design,

selection of a fixed configuration with lower aspect ratio wing substantially changed the

design requirements. The weight penalty to satisfy divergence requirements became much
smaller and a more conventional bal_ced 0/90/5:45 degree laminates of graphite/epoxy was

adopted and the entire laminate was rotated by 9 degrees based on the results of the

parametric study presented in Figure 3. The weight increment to be added to the strength

design to satisfy 912 knots divergence-velocity requirement represented only 4% of the wing

structural weight, while decreasing the tip ribwashin angle from 5.2 degrees to 3.9 degrees.

_' Designed stiffened
"' ,__ to meet 760 KEAS

• _ 0[_ divergence velocity

|-_ Optimum kick angle

I" = approx. -10"

1.0

I'- S!rer)g.thdesign without
I"- stiffening for divergence

L velocity requireemens

_ructural Ref. Axis _ 14 18. ......112 I-16

Spanwise Fiber kick angle, _, DEG

Figure 3 Variations of Structural Model Weight with Spanwise Fiber Kick Angle
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• Close-Coupled Canard
• Advanced Flight Control

• Variable Camber

• Aeroelastically Tailored
Composite Forward-Swept Wing

• Thin Supercrltical Wing
• Relaxed Static Stability

J

Figure 4 Grumman/DARPA X-29A Advanced Technology Demonstrator

While detailed changes were made in the configuration and in material allowables,

the smoothed version of the upper- and lower-skin laminates obtained in this study served as

the starting point for the final wing design. Two X-29 aircraft (fig. 4) have been built and put
into a series of highly successful flight tests at NASA Ames Dryden Flight research Center.

• Application 2: Composite Wing and Vertical Tail (CW/VT) Program

The CW/VT wing is a multi-spar configuration having graphite-epoxy covers and

metallic substructure. This design was implemented into the production flight hardware. The

structural and design models shown in Figure 5 contain about 3,100 members, 3,400 DOFs

and 6,000 design variables. First, the composite components were sized for maximum fibre

strain and for panel buckling criteria with 102 load conditions. Resizing for control

effectiveness then followed to satisfy pitch and roll effectiveness, ratios of pitch moment and

hinge moments and ratios of roll and hinge moments at Math numbers 0.9 and 1.2. The
resultant design was checked against buckling requirements by an external program and

minimum gauges were modified to satisfy buckling requirements. Finally, resizing for

control effectiveness and strength requirements was repeated prior to sending out the design

for postprocessing and smoothing for the final sizing decision.
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Figure 5 CW/VT Wing Finite Element Model

1.2 Modem Appliqations of TSO for Aeroelastic Tailoring at General Dynamics

General Dynamics spearheaded development of an ambitious aircraft wing design

optimization code, TSO, under a series of contracts with Air Force in early 1970s. The
structural analysis model for TSO is not finite element-based because this code was intended

for use in the conceptual design phase where sufficient data to build finite element models

are not yet available. This method for structural analysis proved itself extremely valuable in

performing trade studies on many alternative configurations in time to have realistic impacts

on the ongoing design projects. Even today, finite element structural analysis models tend to

lag behind the design cycle evolutions. Therefore, structural optimization based on finite
element analysis methods cannot expect to be a critical component in the conceptual design

phase, unless a breakthrough is made in the automatic generation of finite element models for
geometrical and topological variations. While TSO sacrifices modeling details of structural

arrangements, it has critical features incorporating aeroelastic responses in the structural opti-

mization of composite wings. For this reason, TSO has been updated and widely used in the

U.S. aerospace industry throughout the 1980s.
At General Dynamics Fort Worth, an upgraded TSO is integrated in the conceptual

design phase of an airplane design process that is followed by more detailed analyses in the

preliminary and production phases. 5,6 TSO facilitates the simultaneous consideration of

strength, stiffness, frequency, divergence, flutter speed and control surface effectiveness in

conjunction with structural weight minimization. Accumulated experiences of development

and applications of TSO to various projects allowed General Dynamics to master the
effective use of this tool in a production environment. While the structural models are

relatively simple, skillful and aggressive use of TSO requires a good understanding of

practical structural design considerations. The two most significant factors in practice are the

prescription of material parameters and of production requirements. Selection of material

allowables must be set by durability and damage tolerance requirements and must include



concern for practical structural certification of typical stress concentrations such as cutouts

and bolted joints. Selection of practical fibre orientation angles, limitations on the ratio of 0 °

angle plies and symmetric laminate configurations, etc. may also be important requirements
for the resultant design to be usable. It is interesting to recognize that applications of tools

such as TSO can explicitly provide sensitivity of aircraft performance with respect to the

material properties, and thus could direct the materials R & D.

• Application: Fighter Wing Redesign Evaluations by TSO

A fighter composite wing study was performed to establish structural sensitivities in a

parametric fashion that included the optimized effects of various aeroelastic tailoring
criteria. 6 A matrix of seven wings was defined considering wing span, wing area and leading

edge sweep as parameters. Composite skins were constrained to be symmetric by linking

thicknesses of +45 deg and -45 deg layers and a manufacturing constraint was imposed such

that no one layer exceeds 55% of the total skin thickness. A strength constraint was also

imposed for maximum strains not to exceed 3,000 microinch/inch. In addition, aeroelastic
constraints to ensure that Flaperon roll effectiveness exceeds 0.5 at M = 0.9, 10,000 ft
altitude and to ensure that flutter speed exceeds 1,000 kt at M = 0.9, sea level are imposed as

necessary. Note that each data point given in Figure 6 represents a complete design

optimization with the corresponding values assigned to the parameters.

_1200 4 Strength Sized '

_ looo4 _--_" /

t °

"-/ _i //" <_ 40ol , , , t , , , , ,

33 34 35 a8 a7
_' WING SPAN (FT)

(a) Span Trade

Figure 6 Fighter Wing Redesign Evaluation Study
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H. Integration of Conventional and New Technology

11.1 Lockheed Aeroelastic Structural Design Program

Lockheed Aeronautical Systems started development of PADS (Preliminary Aeroelastic

Design of Structures) in 1976. By that time, Loekhee_ had a set of well established computer

programs to perform final aeroelastic analyses. They included:

A user-friendly matrix-algebra-based computer system

A grid transformation program

A finite element based structural analysis program

Steady and unsteady aerodynamic programs

Weight estimation and distribution programs

9



Steadymaneuveraeroelastic load programs

A transient maneuver aeroelastic load program

A ground handling load program

A dynamic loads (gust, Taxi, landing) program

Flutter analysis programs

Structural resizing programs

Structural sizing programs for stress and fatigue
Feedback control functions synthesis programs for load relief and fluuer

Database management programs
Structural finite element model generator programs

Plotting programs

General utility programs known as pre- and postprocessors

These programs were readily available at any design stage, but computer access and job

preparation problems prevented them from being used on quick design studies in the early

design phases. For conceptual configuration evaluations, Lockheed had the ASSET
(Advanced Systems Synthesis and Evaluation Technique) program, but the weight then had

to be based on semi-analytical and statistical data. The goal of the development of PADS was

to update the weight database during the configuration trade studies with ASSET as well as

to perform general aeroelastic analysis and design in a highly computerized environment.

The relative positioning of ASSET and PADS is shown schematically in Fig. 7.

LEVEL OF
EFFORT

2

CONCEPTUAL DESIGN

DISCI!LINE

REPRESENTATIONS _'_
REQUIREMENTS arid (PARAMETRIC
EXTERNAL DIMENSIONS STATISTICAL

GRAPHICS I if PARAMETRIC

I MODEL _ ASSET I _ VARIATIONLAYOUT v I . . I - -
..} CADAM /

BOARD

DIMENSIONS I

t

UPDATED
DATA

DEFINITION

!
[ _, AERODYNAMICS /
I _ PROPULSION P
J -sD'  wU, YS,Wcs-; ..........

TO POINT DESIGN

Figure 7 PADS and ASSET Interface
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In the development of PADS, Lockheed recognized two critical technical issues to be
addressed. The first was that the structural modeling effort was by far the most time

consuming of any aeroelastic modeling task. This led to the major engineering development

and coding of computer programs for the rapid generation of principal ingredients of the

finite element model using relatively few input variables. The second issue was data- and

program-flow management to seam through the many modules incorporated into PADS. To
facilitate this capability, CBUS (Continuous Batch User Specification) was developed.
CBUS is written in the UNIX command language and manages data and program execution

and provides a user interface through a high level command language.
The structural design scheme implemented in PADS is visualized in Figure 8. 7 As

shown therein, sizing with converged flexible loads was considered to be important for

calculating the margins of safety with reasonable accuracy for production sizing. For strength

sizing, finite element analysis is used to predict internal force distributions, which are then
used for individual panel sizing to meet the desired margins of safety as well as for

computing stress allowables for system level sizing, if required. Flutter sizing is performed

using approximation concepts that require sensitivity data computed by perturbing the system

matrices. For optimization with respect to the approximate models, a nonlinear programming

package, ADS,_was used.

I Design Objectives ]

SIZING

I RigidNP _'] FirstStatic Loads Sizing

.___ WeightUpdate

"--'_1 WeightUpdates I

1

Weights II Transformations

._ First Flex I.,J

Static :Loads][
First Flex '_._,.Sizing

Second Flex t _ _1 Flutter Sizing IStatic Loads Constraints

) 'Second Flex
Sizing

Second Flex t - I Second Flex Taxi IGust Loads -I and Landing Loads ]

• • • Repeat to third flex sizing or final loads, etc.

Figure 8 Design Process Overview
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• Application: Transport Wing Design Exercise

From 1981 to 1985, Lockheed, under a NASA Langley contract, exercised PADS on

a known design: the wing design for the L1011 wide body transport. 9-11 The baseline aircraft
was selected to be the L1011-500 with a maximum gross takeoff weight of 504,000 pounds,

a maximum design zero fuel weight of 338,000 pounds, an operating empty weight of

252,000 pounds, a range of 5,200 nautical miles, a payload of 40,000 pounds and a cruise
condition of 39,000 ft at Mach number 0.83. This baseline aircraft wing had a span of 164 ft

4 in., a 25% chord sweep angle of 35 deg. and an aspect ratio 7.64.

PYLON SIC

x12= 364.197
Y12= 421.286
z12- - 7.292

475 n

t2,
24

Figure 9 Wide Body Transport Wing Configuration
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Application of PADS to this wing design considering about 25 static load conditions
revealed several interesting features. The effects of flexibility were important enough to be

incorporated in the preliminary wing weight estimation process. Sizing for rigid wing loads
and flexible wing loads could differ as much as 20% depending on the location of the panels.

However, the convergence seemed to be very fast, requiring no more than two to three

flexible loading iterations. Two types of weight factors were identified. The fit'st is the effect
that the finite element model is not accounting for details. Those details accounted for about

12% additional weight to the resized structural weight. The second was the nonstructural

weight to account for sealants, rivets, paints, etc. and was about 20% of the model weight.

For this wing, flutter was not an active constraint.
This planform was originally designed for cruising at Math 0.88 reflecting the fuel

cost prior to the oil crisis. Preliminary performance calculations by ASSET suggested an
increase in the aspect ratio to 12.0 and a change of the quarter chord sweep angle from

35 deg to 25 deg if the realistic fuel cost in early 1980s was taken into consideration.
However, this result had to be verified with more reliable wing weight data, because the

database of ASSET did not have data in this aspect ratio range. The problem to fill this gap

was assigned to PADS.
This was a large deviation from the baseline configuration and provided a challenge

to test if PADS could work well for configurations that are substantially different from that of

the baseline. Two aerodynamic planforms corresponding to the 25% chord sweep of

35 degrees and of 25 degrees were created while keeping the wing area identical to the
baseline design of 3,552 square feet. For these two models, the automated finite element

model generation program created both structural analysis and design models. Structural

resizing was then performed by PADS.
For an aspect ratio of 12, the flutter velocity of the optimized wing was 430 KEAS,

which was close to the dive velocity of 418 KEAS. The structural weight penalty to increase

the flutter velocity to 1.2 times the dive velocity and the weight penalty to install active
flutter alleviation were evaluated and recommended for consideration in the subsequent

system analysis and optimization by ASSET. Results of this series of studies are summarized

in Table 1.

A series of "follow-on works" have been performed at NASA Langley Research

Center to test the multilevel design strategy on this problem. 10,11,12 Refs. l0 and 12 used a
different set of software from those of the Lockheed studies in all three levels of the design

process. These follow-on studies are not intended to compare the final results side by side
with the results obtained by Lockheed, instead they tested feasibility of the multi-level

system optimization scheme based on optimal sensitivity proposed originally by Sobieski 13

taking advantage of the large practical structural design problem with a well documented
finite element model. There were over 1,300 design variables in the third level subsystems in

Ref. 13, although each sub-optimization handled much smaller number of design variables.
The finite element analysis model in NASTRAN data format for the baseline wing is

available for qualified organizations as an excellent testbed for a large scale structural

optimization.

13



Aspect Ratio

1/4 C Sweep (deg)

Taper Ratio

Wing Area (ft 2)

Wing Loading
(lb/ft 2)

Thickness Ratio

Cruise Mach No.

Point Design

Baseline

7.64

AR-12

Sweep=35

12.0

35.035.0

0.259 0.259

3,541.0

142.3

10.13

0.83

3,541.0

148.0
1

10.03

0.83

Radius (NM) 4,778.0 4,749.0

GTOW (1000 lb_) 504.0 524.0

AR=12

Sweep=25
12.0

Optimal Design for
Minimum Block Fuel

Baseline* With PADS

wei[:ht inputs

12.0 14.0"*

25.0 35.0

0.259 0.298

3,541.0 3,650.0

146.9

10.03

0.76t

4,786.0
520.3

142.3

11.0

0.83

4,780.0

OWE (1000 lbs) 252.0 288.8 278.6
Tr

* Base line aircraft was optimized without reliable wing weight estimation data.

35.0

0.301

3,528.0

140.9

11.0

0.83

4,778.0

497.1

272.7

** At this aspect ratio, the flutter speed is below VD, not acceptable for FAR-25. Active

flutter alleviation required.
t Severe drag rise for a cruise Mach number 0.83. Minimum block fuel Mach number for

25 degree sweep was 0.76.

Table 1 Summary of Wide Body Transport Aircraft Wing Design Exercise

II.2 Applications to High Speed Aircraft Desi_

Recent emergence of high speed aircraft development programs such as the NASP

(National AeroSpace Plane) or the HSCT (High Speed Civil Transport) provided unprece-

dented opportunities for structural optimization technology to demonstrate its effectiveness.

Various aerospace companies have been working with applications of structural optimization

to this type of aircraft. This is motivated by : (1) a lack of historical data to predict the first
order effects and (2) the knowledge that conventional structural design, using known

materials, cannot satisfy basic mission requirements. There will be more information

published in the future, but the capabilities of the system developed at McDonnell Douglas 14

for a NASP-type vehicle are summarized here.

The NASP is an experimental research aircraft that is capable of performing multiple

single-stage-to-orbit and hypersonic cruising missions. Use of cryogenic hydrogen as the fuel
makes the volume of the aircraft one of the critical design parameters and thereby

necessitates extremely efficient shell structures to enclose the volume while serving as the

heatshield against severe aerodynamic heating. Shell structure/thermal protection system

configurations are variable depending on the location, but a typical panel subject to a

relatively high heat flux is shown in Fig. 10. McDonnell Douglas assembled a system to

estimate panel weight using existing engineering methods as shown in Fig. 11. Aerodynamic

loads, thermal loads and structural responses are coupled together to calculate internal loads

14
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of the flexible aircraft. The geometry data are transferred among disciplines by mapping

software. Structural analysis for internal load distributions is performed by finite element

analysis, which separately calculates internal loads due to mechanical and thermal loads. The

basic philosophy for structural design is that th-e internal forces (not stresses) are nearly

invariant through the sizing process. This assumption for the NASP-type aircraft was

confirmed when convergence was achieved in three or four iterations. Each structural design

cycle includes resizing each designed panel considering strength, stability and thermal stress,

aiming at optimization of the section geometry as shown in Fig. 12. Analysis methods were

validated against other codes such as PANDA and against test measurements.

Internal Panel Material

Loads, _nd Section
Model Temperatures, Property

Description and Gradients Databases

1

--abrication
Umits

LStructural Optimization Codes J

Twosheet

(Single Faced Corrugation)

• Single and Stability Checks
• Thermal Stress Included

• Optimum Section Geometry Defined

A_ , r_ P_

Width

Figure 12 Structural Sizing Codes

Guidance for manufacturing, producibility and supportability are incorporated into

the specifications of sizing limits. Consideration of these types of local panel design details in

the conceptual/preliminary design phases is recognized to be important in practice, because

of the high level of confidence that sized sections are less likely to change significantly as the

configuration matures.

As previously described, the new challenges associated with hypersonic aircraft are

linked to tight synergy among aerodynamics, propulsion, thermoaerodynamics and struc-

tures. Configuration management, to ensure all disciplines work with consistent data, is

increasingly difficult without appropriate analysis/design tools. It is likely that this area must

make substantial progresses in 1990s for the U.S. aerospace industry to meet the challenges

of development of unprecedentedly high performance aircraft.
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HI Aggressive Applications of New Tools

In the last half of 1980s, we saw availability of structural optimization features
installed in well recognized commercial finite element analysis programs such as
MSC/NASTRAN and ANSYS. Also, the availability of excellent numerical search programs
and of super computers that can process a large volume of data within reasonable turnaround
time provided opportunities that were notpreviously feasible.

III. 1 Strength and Stiffness Design of Transport Aircraft Wing

McDonnell Douglas at Long Beach recently came very close to setting a world record
in terms of the number of design variables for structural optimization based on a general
nonlinear programming optimization algorithm. 15 It is significant to know that commercially
supported software can be applied to the problem of this scale. At the same time, we need to
realize the substantial amount of peripheral work required to make best use of such capability
in a production environment.

An analysis/design model for an MD12X wing (Fig. 13) was created for structural
weight minimization with strength, tip deflection and tip twist constraints. The attributes of
structural analysis/design model are shown in Table 2. The initial, approximate, skin
thickness distribution was obtained using TSO. The thickness distribution was then converted
to the format of MSC/NASTP, AN. A special FORTRAN program was written to create
design model data automatically for MSC/NASTRAN. This was necessary because
PATRAN (which was used to create the analysis model) did not then have any capability to
create design models In fact, there are no finite element analysis preprocessors that can create
design model data for a problem of this size. The design variables are sizing properties for
skins and stringers.

Fig. 13 MD-12X Wing Structural Analysis Model
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Number of Elements 9,479

Number of Grids 2,851

Number of Free DOF 9,945

Number of Load Cases 1 to 3

2,192Total number of Design Variables

Number of Independent Design Variables

Number of Constraints

1,168

5,314

Table 2 Attributes of MD12X Wing Analysis/design Model

MSC/NASTRAN Solution sequence 200 was run on a CRAY X-MP with only the

strength constraints. The design converged in five cycles expending 3 hrs and 37 minutes of
CPU time (16 hours of clock time). This run required six static analyses, five sensitivity

analyses and five optimizations with respect to approximate models. Since independent static

analysis on Solution 24 required 3 minutes 27 seconds of CPU time, it appears that

significant amount of computational effort was required in sensitivity analysis and approx-

imate optimization, which is not surprising for the large number of design variables and large

number of active strength constraints toward the end of the design process.
The sizing results of this optimization may not be the production sizing, since the

allowables that take the compression-shear interaction are sizing dependent. A second

external FORTRAN program was developed to process the sizing and stress data from the
final design of MSC/NASTRAN optimization. This program makes adjustments to member

sizes so that all components have adequate margins of safety using a stress interaction

equation with corresponding size-dependent allowables. The results of this program

automatically update the MSC/NASTRAN analysis/design model data for additional design

optimization or for verification analysis. The final design thus obtained was optimal for
allowable stresses while maintaining desirable ratios of stringer area to skin panel end area

for crack prevention and adequate torsion stiffness.

Next, stiffness design was attempted to reduce the tip deflection to 50% of the

strength design and the tip twist to 27% of the strength design. After five design cycles, the

tip deflection was decreased to 65% and tip twist to 36.4%, while the structural weight was

increased as much as 30%. This weight increase was not acceptable and verified that the

swingent stiffness requirements cannot be satisfied with this particular wing configuration

simply by adjusting the material distribution.

III.2 TRW ASOS - Applications to Space Structures

TRW Space and Technology Group in Redondo Beach, California is one of the most

successful organizations in incorporating critical ingredients of modern structural

optimization techniques as an essential part of the day-to-day operational tools in the design

of space structures. 16 An Automated Structural Optimization System (ASOS) computer

software was developed beginning in 1983. The group that developed ASOS was thoroughly

familiar with approximation concepts and various new techniques were added to enhance the

efficiency of ASOS and to facilitate its applications in a production environment. Structural

design of space structures has to perform extremely strict weight minimization while
maintaining severe static and dynamic design requirements for safe and reliable operation. It
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is estimated that the cost to lift a payload to a low earth orbit is several thousand dollars per

pound but, at the same time, the payloads are very expensive hardware that may not be

replaceable.
To avoid duplication in creating and calibrating finite element analysis models for de-

sign optimization, response analysis and design sensitivity analysis capabilities implemented
in MSC/NASTRAN were selected to be the key components of ASOS. This choice, together

with the incorporation of approximation concepts in the basic architecture, made it feasible

for ASOS to handle relatively large design problems. The design model data for sensitivity

analysis are generated semi-automatically by a separate program. For both strength and

stiffness sizing, ASOS makes full use of its beam cross section library (currently more than
20 cross sections are stored). Generation of beam properties and determination of detailed

sizing are performed by ASOS taking specific characteristics of cross sections into account.
This is done both for accuracy of analysis and for detailed design and fabrication

requirements. As is often the case with aerospace applications, the mass matrix is generated

separately from the structural model. To consider the structural mass as the objective function

or as a constraint dependent on the design variables, 1% of the real density is assigned to the

designed beams and checks are performed to ensure that this additional fictitious mass has no

appreciable effects on the key responses affecting the final design.

• Application: Gamma Ray Observatory (GRO) Platform Structural Design Optimization

ASOS was successfully applied to the basic structural design of the GRO that was

lifted to the orbit by the space shuttle in April 1991.17 During the initial design phase, the

weight of the GRO had grown and the GRO Office decided it was necessary to conduct a

weight reduction study for the GRO platform. The primary structure and the finite element

model are shown in Figures 14 and 15.
This model had about 6,000 static and 500 dynamic degrees of freedom. Weight

minimization was the objective, while the three lowest natural vibration frequencies and

minimum gauge requirements were imposed. The minimum gauges were predetermined to

represent strength, buckling and fabrication requirements.
TRW performed two parallel weight reduction efforts simultaneously: one was to use

the conventional trial-and-error approach based on engineering judgements, and the other

was to apply ASOS. The performance of ASOS was satisfactory since a converged design

was usually obtained within a few design cycles. It turned out that automated structural

optimization achieved significantly more weight savings at less than half the cost required in

the conventional approach. It was determined that the conventional approach (based on

intuitive engineering judgements) had to compromise in system responses for this level of

complex interaction of design variables and system responses. In particular, it was extremely

interesting that ASOS added mass to certain portions of the system even if the objective was

weight minimization. These small additions of mass to one part, however, permitted it to take

away more mass at other places. This type of adjustment is hard to perceive intuitively, while

the numerical optimization algorithm had no difficulty in grasping the global picture to

manipulate large number of variables simultaneously.
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TRW has been upgrading ASOS and has integrated it in the spacecraft structural

design process. Following its success on the GRO, ASOS has been used in various projects,
including the payload support structure of the Orbital Maneuvering Vehicle (OMV).

IV. Structural Optimization in a Multidisciplinary Design System

IV. 1 Northrop Advanced STOVL Preliminary Desi_ma-- (Applications of ASTROS)

Short takeoff and/or vertical landing (STOVL) capabilities for future fighter aircraft

are becoming increasingly important to meet the demands of landing on damaged or

improvised runways, to operate from remote and austere sites in challenging environments

and to perform multiple sorties effectively. To achieve STOVL capabilities, fully optimized
structural concepts are required utilizing advanced materials and innovative manufacturing

technologies.
The Northrop N382-20 STOVL fighter is a descendent of a family of horizontal

attitude take-off and landing (HATOL) and vertical/short take-off and landing (V/STOL)
aircraft. Predecessors to the N382-20, such as the -12 and -18, were developed to meet basic

mission and point performance goals, with the exception of supercruise in dry power. The

-20 version incorporates configuration changes to satisfy the supercruise through shortening

the fuselage.
As part of the "Ultralightweight Structures" program, the N382-20 STOVL fighter

was chosen as one application to assist in the development of ultralightweight structural

design concepts and advanced materials. 18 In looking to "reduce the weight" to the
maximum extent possible, formal numerical structural optimization techniques were an

intrinsic part of the study. The Automated STRuctural Optimization System, ASTROS was
chosen as the principal multidisciplinary optimization tool with other subsidiary optimization

tools used for component design.
ASTROS is intended to provide quantitative information to the designer for making

decisions regarding the arrangement of large and intermediate structural components. For

example, the relative weights for optimal designs with either multispar or multirib wing
constructions, or the weight tradeoffs associated with a carry-through wing versus a side-tie

wing. For this study, preliminary choices for these items were made to demonstrate one step

in the preliminary design cycle using optimization. ASTROS, then, determines the optimal
vehicle with a given structural arrangement (optimal being defined as lightest). Further cycles

would then allow the designer to compare optimized arrangements.
The baseline STOVL fighter (Figure 16) is a single engine aircraft that takes off

conventionally (with the addition of vectored thrust) in 600 feet, and can land vertically at the

conclusion of the mission. It employs a Remote Augmented Lift System (RALS) turbofan

propulsion system with vectorable nozzles to provide the thrust needed for _e-off, vertical

landing, and for control during transition and hover. The fighter is a 28,000 lb class aircraft
that carries two AMRAAMs and two ASRAAMs in an under fuselage conformal pod and

carries a 20mm gun with 500 rounds of ammunition. Basic dimensional data and significant
characteristics of the STOVL fighter are presented in Table 3. The N382-20 has a canard-

delta planform composed of four major structural assemblies constructed primarily from
advanced graphite reinforced composites: multi-rib wings, shoulder mounted to the fuselage;
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Figure16 AdvancedSTOVLFiniteelementModel
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Table 3 STOVL FIGHTER BASIC DIMENSIONAL DATA
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semimonocoquefuselage; fully movable canards; and two wing-mounted nacelles that

accommodate the landing gear, contain fuel and support the vertical stabilizers.

The ASTROS procedure provides a multidisciplinary analysis and design capability

for aerospace (and other) structures. The engineering analysis capabilities of the system
include finite element structural analysis (static and dynamic), aeroelastic analysis (static and

dynamic), and automated design within a single software tool. The design variables within
ASTROS are the thicknesses of membrane plate elements and the areas of BARs and RODs.

The design constraints available in ASTROS include:
1. Stresses and strains (within the strength allowables)

2. Deflections (maximum and minimum)

3. Natural frequencies (maximum and minimum for each mode)
4. Aileron and lift effectiveness for the static aeroelastic performance (maximum and

minimum)

5. Flutter damping (maximum)

6. Thickness/area (maximum and minimum).

The principal strength of ASTROS is that these constraints can be applied over a

range of boundary conditions (e.g., symmetric and antisymmetric), flight conditions and load

conditions. Once applied, ASTROS attempts to find the minimum weight structure that can

simultaneously satisfy ALL applied constraints. Hence, the optimum structure does not

represent a point optimum, but one that is feasible throughout the flight envelope. A

sampling of loads was chosen for this ASTROS application covering the broad spectrum

critical for major portions of the structure. The selected conditions were:
1. Maneuver loads on wing, fuselage, and canard for symmetric 9g pull-up and 3g push-

over with aeroelastic correction.

2. Antisymmetric maneuver for 360 degrees/see steady state roll with aeroelastic
correction.

3. Rigid aero 9g symmetric pull-up load.

4. Quasi-static landing impacts on the nose landing gear and the main landing gear.
5. Flutter at Mach 1.5 at 15,000 ft for fuselage and wing combined. Canard and vertical

local flutter were not included since these portions represent undesigned structure.
These conditions were considered to be adequate for an initial sizing of the STOVL vehicle

with the intent of adding additional cases as our knowledge of the vehicle behavior increased.

The following primary structural components of the vehicle were modeled: skins, longerons,

bulkheads, spars, ribs and inlet ducting.
Multidisciplinary optimization of aerospace systems always requires accurate mass as

well as stiffness modeling. A key modeling parameter for structural optimization is the non-

optimum material density. The value chosen for the STOVL fighter was 1.5 times the true

density. This quantity must account for the extra weight associated with splices, joints,

fasteners, and anything else which is not modeled in detail but is felt to be dependent on the
element thicknesses. Little historical data is available to guide the analyst in this

determination. Some studies at Northrop using an internally developed program REVWING

on the F-18 wing, indicate a factor of 2.0 for the skins and spars, and 5.0 for the ribs. The
value 1.5 was chosen because the REVWING results were seen as case specific and not

applicable to this vehicle. This remains, however, an area for active research (for example see
Sec. V.1). In addition to the structural mass, several hundred concentrated masses were

included in the model to represent the nonstructural mass of equipment, payload, crew, and

fuel.
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The "design model" consists of two critical parts: the definition of the local design
variables (those elements to be sized) and the definition of constraints. The static design
constraints consist of strength allowables for each element in the finite element model. Other
constraints applied were for the aerodynamic behavior of the STOVL. The static aeroelastic
roll performance at Mach 0.70 at sea level (SL) was constrained to exceed 360 deg/s and the
vehicle was required to be free of flutter at Mach 1.5/15,000 ft:

For this study, as much of the N382 structure as possible was represented as eligible
for redesign. The parts not sized by ASTROS were the vertical stabilizer, the canard, and the

landing gear. The engines and other internal equipment were taken as fixed in size and mass.
The thicknesses of plies for all other structural elements were linked using shape functions
and were therefore being sized by AS_OS. The wing structure had 74 design variables and
included 4 ply directions on each of the upper and lower skins (0/+45/-45/90). The
substructure was modeled using "single ply" composite elements as were used on the

fuselage.
All portions of the fuselage were modeled with just 2 shell/plate element properties:

quasi-isotropic top and bottom skins, bulkheads, and frames; and 100% 45 degree "Fabric"
side skins (primary shear structure). Note that our fabric was cross-plied unidirectional tape
rather than a true fabric. Fuselage skins tend to be buckling critical, so minimum gauge limits
were expected to be critical. Buckled skins would not carry their fair share of the bending
loads, so the 45 degree "fabric" side skins were intended to minimize their contribution to the
fuselage bending moment of inertia in lieu of true buckling constraints. The quasi-isotropic
assumption for top and bottom skins represent skins of primarily +45 degree plies with
integral fore/aft stiffeners. As a result, the elements in the fuselage were all "single ply"
composite iayups represented by a total of 92 design variables.

A feasible design (one that satisfies all the imposed constraints) was achieved with a
resultant weight of 4230 lbs of designed structural weight. The undesigned structure and
nonstructural weight was 21,989 lbs for a total "optimal" weight of 26,219 lbs. The weight
target from the mission analysis was 28,133 lbs. Of that, 6,144 lbs is the structural weight not
including the landing gear. Figures 17 and 18 show some of the final thicknesses of the skin
and substructure at the converged optimum. The critical constraint for the STOVL was the
flutter constraint. The STOVL model represents a poor configuration for flutter in that the

wing pods, which carry both fuel and avionics (approximately 800 lbs/side), provide mass aft
of the wing's elastic axis to excite a flutter mode. The flutter mode observed in the STOVL
was a coupling of the first fuselage bending (with the pod following along since the delta
wing has significant chordwise bending) and the fast wing torsion mode. Notice, that the
term weight savings is not used in relation to our final design. Since there was no baseline
version to compare to, and only one feasible design solution was sought, there can be no
"weight savings." Only one design is available which satisfies all the multidisciplinary
constraints.
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Other constraints that were near critical at the optimum and which strongly influenced

the early design iterations were the stress constraints due to the landing impact loads and the
9g symmetric pull-up. These constraints influenced such regions as the main and nose

landing gear pickups, and the canard support structure. Conspicuously absent are the wing

skin stresses. They are not critical at the optimum since the flutter requirement forced a

general thickening of these elements to increase the wing stiffness.

Other gauge results are worthy of some discussion. For example, the upper wing skin

at the optimum is more than twice the thickness of the lower skin (0.33 inch vs 0.14 inch)

and is thicker at the leading edge than the trailing edge. The reasons for this are not

completely clear. Certainly, the different compression and tension allowables play some role,

but cannot account for a factor of two. The balance is probably driven by the stiffness

requirements of the flutter constraint. Conventional wisdom is not sufficient to separate the

effects of competing constraints in driving the design. This is one example of a non-intuitive

solution to the multidisciplinary design problem.

The results of ASTROS smile aeroelastic analyses indicate that the N382-20 does not

have enough canard effectiveness to aim the aircraft for level flight without excessive drag

(Canard deflection = 15 degrees). Moving the canard forward enough to fix the situation is

not acceptable. This forward center of gravity challenge is often encountered in STOVLs

with RALS systems. To limit necessary bleed for vertical flight using the RALS nozzle and

deflected main engine thrust, however, the engine position must remain forward, close to the

aircraft center of gravity. The pods have already been used to move the e.g. aft to compen-

sate, therefore, no ready means are available to move the e.g. further aft.

Another important result of the STOVL study was the development of a multi-

disciplinary design cycle including ASTROS. Even with the simplifications made for the

STOVL preliminary design, the issues of finite element modeling, weights, design flight
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conditions, aerodynamic modeling, fluttermodeling, design variable selection and

optimizationproved to bc fairlycomplex. The levelof detailin the ASTROS STOVL model

isadequate for preliminarydesign,more detailedthatistypicalfor conceptual design and

crude relativeto finaldesign work. As a modeling decision,both the fuselageand the wing

structureswcrc modeled at a moderate level of detailratherthan focusing on any one

component. This was importantsincethe fuselageflexibilitycontributedto the criticalflutter

instabilitywhich drove the design. This is considered to be the proper approach to

multidisciplinaryairframedesign sinceitmakes no a prioriassumptions about the natureof

fuselage/winginteractions.

Buckling alsoplays a rolein interpretingthe validityof our optimal structuralsizes

and computed structuralweight. The absence of buckling constraintsmay or may not

profoundly influencethe optimal thicknesses.There isa weight trade-offthatwas not fully

investigatedin thisstudy in which stiffenersare used for panel breakers,thusreducing the

required skin thickness.Obviously, itisdesirableto have the means to perform thistrade

within the multidisciplinarydesign tool.Since the resultspresented in Reference 18 were

obtained,Northrop has furtherdeveloped ASTROS to includelocalpanel buckling and some

composite manufacturing constraints.

ASTROS clearlyprovidesan advance in formaloptimizationtoolsforaircraftdesign.

The conventional design methods where dynamics, acroclasticity,and flightcontrolsarc

treatedindependently as "weight penalties"to the optimal strengthdesign willno longer

suffice.As aircraftbecome lighterand more flexible,multidisciplinarydesign optimizationis

required to develop design concepts, structuralarrangements, and structuralsizes that

reconcileconflictingdesign requirements.ASTROS has demonstrated promise in providing

feedback to the designer on the quality of various concepts early in the design cycle.

Originallyconceived as a preliminarystructuraldesign tool,itcan alsoserve to quantifythe

relativemeritsof differentconfigurationsor structuralconcepts.

IV.2 High Speed Aircraft Desi_ by Rockwell ASO

With the advent of high supersonic to hypersonic aircraft development programs

during the 1980s, various companies responded to the need to work with the complex

synergistic nature of the design problems. Rockwell developed a program, RSOP 19 (Rapid

Structural Optimization Program), addressing the following issues:

• Reduced iteration cycle time through automated data exchange between disciplines

• Timely analysis and optimization of advanced airframes based on finite element models

• Provision for interdisciplinary interactions using mathematical optimization

• Estimation of the structural weight early in the design process.

It was recognized that updating structural analysis/design models at the same pace as the air-

craft design cycle is extremely difficult using conventional tools and practice. RSOP
responds to this specific need as a collection of independent programs working with a

common executive controller program and a database (which is nothing but shared files at

this moment). The primary structural optimization module is called SAOM (Structural

Analysis and Optimization Module) and a second program for panel buckling is called

BUCKOP (panel BUCKling analysis and OPtimization module). SAOM implements

optimality criteria design capability for strength and deformation with finite element

structural analysis. BUCKOP resizes element gauges in the structural model for biaxial panel

buckling using the element stresses saved from SAOM module. As support modules, RSOP
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contains external, fully integrated, loads generation modules for linear and nonlinear

aerodynamic analyses and a program called CDS (Configuration Design System) that defines

vehicle moldline geometry on the basis of quadratic splines. CDS then passes the data to the
FEM preprocessor. Another significant support module, RCADS (Rockwell Computer Aided

Design System) is a FEM pre/post processor that has the ability to prepare analysis as well as

design models for structural optimization and also is capable of creating geometry models for

thermal analysis. The overall aircraft system design optimization is performed under the
Executive Controller by the ADS optimizer 1° based on the global sensitivity. 20

The most significant results obtained by RSOP and open to the public is the forebody

geometry design of the single stage to orbit hypersonic aircraft shown in Figure 19.
This is a truly multidisciplinary design problem involving structures, aerodynamics, thermal

analysis and mission analysis, but structural design was one of the critical components since

it is necessary to have a very low structural weight fraction.

fuselage upper surface

i - Lut -! 1 i ertical tail -

forebody
cornbustor

Lf = Forebody Length

Of = Forebody Mean Cone Angle

hu = Fuselage Upper Surface Height

Lut = Upper Surface Transition Length

Figure 19 Baseline Space Plane Configuration

The forebody configuration was represented by the four parameters given in

Figure 19. The objective was maximization of the trimmed specific impulse, Isp, at a

hypersonic speed. Isp is the ratio of thrust to fuel flow and is a critical measure of propulsion

efficiency of the vehicle. This Isp depends on the total air mass flow captured by the inlet of

the engine. The flow under the forebodyis sensitive to the geometry of the forebody. In this

design, 3D Euler CFD, 2D Navier-Stokes CFD, engine cycle/nozzle analysis and finite
element structural analysis odes were coupled via the global sensitivity scheme 20 to capture

the interaction between the aerodynamic geometry and the flexibility of optimized structures.

One of the typical results is shown in Figure 20. If the body is assumed to be rigid, the

optimizer is driving the vehicle shape to become a slender cone shape by stretching the
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forebody while reducing the cone angle. Inclusion of structural flexibility reduced this
stretching by 50%.
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Figure 20 Optimization of Space Plane Forebody Geometry

As shown in this example, structural analysis/design capabilities are recognized to be
critical components of mtdtidisciplinary aircraft design systems. But structural optimization
is not working as an isolated program. Instead, it is interacting with other modules through
constraints and loads. This trend seems to attract a great deal of attention of the research

community as well as the industrial developers. A variety of other applications of the system
developed at Rockwell are also found in References 21 and 22.

V Other Developments

The items compiled in this section represent some very practical and innovative

applications related to structural optimization. They differ from the preceding examples in

that they represent insight into the details of optimization rather than its application to a
single specific case.

V. 1 Weight Evaluation of a Wing based on Optimized Structural Design

Finite element structural analysis models are generally only skeletal representation of

the primary load carrying members and may represent less than half the mass of the actual as

built structures. Additional materials are needed for padding-up for fasteners, stiffening,
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accessholesand other penetrations, primers, paints or other protective coatings, etc. A single
factor and/or normal parametric multipliers obtained by the statistical data may or may not be

adequate, but are especially questionable when extrapolating the data to unconventional new
designs. For airframe structures, the additional factor ranges from 40 to 80% for conventional
metal structures and 30 to 60% for sandwich and composite structures. This level of uncer-

tainty could wipe out all the effort of structural optimization and is unacceptable even in the

conceptual design stage since selection of incorrect values for the factor may lead to poor

design decisions.

In the early '80s, an innovative concept was developed by a group at Boeing Military
Aircraft to address this critical issue. 23 The key is to recognize that structural optimization is

a powerful tool to establish the most efficient loadpaths and that the load envelope, applied to
the finite elements, is reflected in its optimum sizing. The observation that the theoretical

optimal size contains the critical information to estimate the weight of the as-built structure is

very profound.
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Figure 21 Sandwich Wing Panel

To properly account for these weight items in a visible and traceable manner, one
must break down the structure into small enough components; for instance, one structural
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panelmodelledby one finite element. For each component, a theoretical optimal weight is
obtained from the results of structural optimization and additional items are then defined by

increments controlled by multiple factors reflecting design and manufacturing methods.

For example, consider a sandwich panel as shown in Fig. 21. The finite element

model may not account for any of the core materials, or for the padup for the edges where it
would be fastened to the substructure. Also, the core may require an adhesive layer for good

bonding to the laminate skin, etc. The critical factor to make the weight estimation method

usable in preliminary design stage is the capability to come up with reasonably accurate

weight estimates based on the limited information available before detailed drawings exist.

The algorithm developed computes incremental weights to account for known omissions and
add them to the theoretical weight. A particular element would typically use from 3 to

10 algorithms off the shopping list. Hence, the total weight of each element would be:

= +aW + aw; +...+ AW$ (1)

1. Load offset

3. Stepped gauge

5. Surface finish(inner)
7. Manhole

9. Edgeband pad-up
11. Hole out

13. Fillets

15. Honeycomb core

17. Extra skin over taper
19. Core filler

As an example, the list of available algorithms for a plate element includes:
2. Major splice

4. Surface finish(outer)
6. Fasteners

8. Missing lamina
10. Stiffeners

12. Small Hole pad-up

14. Septum
16. Tapered core
18. Skin/core adhesive

20. Transition doublers

21. Positive margin increments 22. S/V hardening

23. Manufacturing tolerance and practical penalties. 24. Special considerations

An incremental weight computation algorithm was developed for each of these items for alu-

minum, composite laminate and sandwich constructions. Each algorithm uses a small number

of control parameters specified by the user, but automatically estimates necessary sizes of
additional weight components based on the theoretical (optimal) size. Therefore, the user of

the computer program, FEM/SOAP, has freedom to select particular design concepts, but

does not have to work out detailed design information.

The benefits of this type of program in the preliminary design include:

1. Accurate weight data of as-built structures in time to give sufficient impacts on the

preliminary design decisions. For example, weight evaluation of a structure with

5,000 elements can be completed in 24-26 man hours and each revision may be

completed in less than 8 man hours.
2. Additional weights to the optimized structures are justified with complete visibility of

"how much, where and why."

V.2 En_ne Mount Desi_ for Cabin Noise and Vibration Control

As shown schematically in Fig. 22, each engine of this twin engine transport is

mounted on the under-wing strut via the isolator mounts. Unbalance of the fan and low
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pressure turbine (LPT) causes vibration which is transmitted through the structure to appear

as noise within the cabin. The purpose of the isolation mounts is to reduce the cabin noise.

Generally, soft mounts are desirable for noise reduction but stiff mounts are desired for

flutter and wear considerations. Therefore, the design of engine mount stiffnesses is, in
essence, reduced to seeldng the best compromises of these conflicting requirements. 24

The complete system is composed of three subsystems: engine [C], mounts [K], and

airplane [A] as shown in Fig. 23. On the engine side, NASTRAN direct frequency response
is used to compute engine compliance defined at the rotor unbalance degrees of freedom and

at the engine mounts. The engine mount compliance [K] -1 is a diagonal matrix of reciprocal

stiffness. On the airplane side, a harmonic shake test at the engine mount attach points is used

to measure the airplane compliance [A] and cabin noise [13].

Noise Measurement (Microphones)

o:::.oo...::,

Wing

Isolators

Mounts'

Strut

FFAN FLPT

ine

Figure 22 Fuselage, Wing, Strut, Mounts and Engine Assembly
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The Method of Compliance Merge is used. The subsystem compliance matrices are

defined by:

Engine:

{bt,:[c: c_.lS_ol,u.j C,.J"I.:_.j
(2)

Mounts:
{_,-_,}=[K)-'{l_,}

(3)

{i1.} = [A]. {1_,}

Airplane: {fl} = [B]-{_,} (4)

Elimination of _'_ _ and _[F _ gives the system compliance equation for finding the unknown
t IJ t •

forces {F,} due to the prescril_l engine unbalance {F.}:

-1 -1+c. +K ] [c=l{F.} (5)

Then, displacements {_+} and noise

{ft.} : [A + K-']{F,}

{_}=[B]{i_,}
(6)

The objective function to be minimized is the RMS of the noise components subject to
constraints on the engine displacements. The design variables are the mount stiffness [K].

Other design variables could be included in this design procedure. The optimizer used in this

study was COPES/CONMIN. 2s
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Figure 24 Computed Measure of Cabin Noise for Three Engine Mounts

Typical results are given in Figure 24, where the RMS cabin noise vs. excitation

frequency are plotted for rigid, initial and optimal mount stiffnesses in the frequency range,
20 to 73 Hz. The initial design before optimization was already well tuned to isolate the

vibration in this frequency range, thus any additional reduction of cabin noise has practical

significance. For the example given above, a significant reduction in noise level in the

frequency range 20 - 45 Hz without degrading noise suppression in the higher frequency

range is considered to be important.

Since it is not desirable to permit excessive deformation, adequate constraints are

imposed on all components of the deformation vector, ils -ue. Furthermore, relative

stiffnesses and their frequency dependence are subject to practical manufacturing constraints

of the mounts, which must be quantified and incorporated into the formulation of the

optimization problem.
Extensive design studies have been carded out for the improvement of engine mount

design of the existing and future transport aircraft. However, verification of the performance

of the mounts designed by the structural optimization technique described herein has yet to

be done.

V.3 Applications of Design by Experiments

Techniques to plan experiments in such a way that we obtain as much information as

possible from a limit_ number of tests have been the subject of research for a long time.
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These same techniques, however, have been applied to engineering design problems only

recently. These techniques are called Design By Experiments (DBE) or Response Surface
Method(RSM). Among the techniques available, various applications of the Taguchi

method 26 started appearing in literature. The Taguchi method is based on statistical theory
and is different from mathematical programming algorithms. This approach may be regarded

as an effective guideline to search through the discrete combinatorial design space to locate
the best combination of design variables using a limited number of experiments. It can take

advantage of prior knowledge of the user to narrow the search space. For example, if the user
has a priori knowledge that there are no interactions among certain sets of variables, the

search space is reduced by taking advantage of such specific knowledge. Under the Taguchi
method, various combinations of tables called orthogonal arrays are available and the

contents of the each table indicate which experiments are to be carried out. Usually the

number of experiments to be carried out is only a fraction of the total possible number of

combinatorial experiments. The user selects one such table and carries out all the experiments

requested. The results of the experiments are used to organize additional tables in such a way

that an optimum combination of variable settings can be identified.
An example applied to structural design optimization was the selection of the landing

gear configuration for minimum weight. 27 In this example, three joint location variables and
two structural member size variables are identified. Each of these five variables may assume

three distinct values, thus the total number of possible combinations is 243. Interactions of

variables are considered only among the joint location variables. An orthogonal table labeled

1127 was used requesting 27 experiments. Each experiment requires an estimate of the weight

of the landing gear structures for the selected values assigned to the five parameters. The
smallest weight found in these 27 experiments was 301.9 pounds. However, after processing

the results, the best possible combination of values for five variables was identified, which

was not included in the 27 experiments. When the weight of the suggested design was

computed, it was found to be 292.42 pounds.
Ref. 28 used the Taguchi method to identify promising regions in the design space

based on the regression model obtained from the results of multiple analyses. For example, if
the domain of each of five variables is divided into four subregions, there are 45 =1,024 pos-

sible subregions. The search for the most promising subregion based on the regression analy-
sis model was performed by the Taguchi method which requires a much smaller number of

optimizations within specific subregions.
More recently, Ref. 29 reported applications of Taguchi method to aeroelastic

tailoring with the TSO program. The purpose of this study was to identify the relative

importance of weighting coefficients in the special composite objective function of TSO, so

that a measure representing better roll performance combined with lower skin weight is

achieved as a side effect of structural optimization by TSO.

These examples suggest various innovative possibilities to exploit integration of the

best parts of two approaches, i.e. methods for design by experiments such as the Taguchi

method and mathematical programming structural optimization methods.
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VI Concluding Remarks

it is obvious that the U.S. aerospace industry substantially increased its use of struc-

tural design optimization during 1980s. It is certain that numerous other interesting and

important projects employing optimization were carried out during this watershed decade, but

the majority of such activities are not available under company proprietary or other strictures.

Often, these applications by line engineering sections remained undocumented because the

engineers are too busy to write about their excellent engineering practices.
While it remains difficult to say in the '80s that, for example, the wing of a particular

airplane was designed by structural optimization, we can say that many of the actual designs

or design studies performed during 1980s depended on structural optimization techniques

somewhere in the design process. The uses of structural optimization might be varied but

such applications must have resulted in practical information useful to the design team. This

trend will clearly be accelerating steadily in 1990s.
Actual incorporation of structural optimization in practical design environment is

different at each company. In the industrial environment, it is hard to introduce any

procedures with which the associated engineers are not completely comfortable. After all,

they have to make design decisions and have to live with the decisions. Therefore, each

company seems to have started with the available tools in which they have complete

confidence or with procedures to which they have become accustomed. Seasoned, skilled

applications of FASTOP at Grumman and the extensive use of TSO at General Dynamics are

examples of the first category. Detailed panel sizing based on the assumption of small

internal force variation through the design variable perturbation has been the standard way of

incorporating finite element structural analysis in the design process. Lockheed, McDonnell

Douglas and many others took advantage of this well established gauge sizing practice and
used structural optimization to adjust multiple sizing variables in each of the local

substructures. The designers seem to feel at home with this approach because they can

determine relatively detailed structural arrangements in the early design phases, while

assuring that the designs they are producing are physically realizable and manufacturable.
Industrial applications of general purpose structural optimization codes have not been

well publicized yet, especially in the domain of aerospace design. One of the obvious reasons

for slow penetration of the general commercial structural optimization codes is the lack of

preprocessor capabilities. With the advent of new generation graphic preprocessors that are

capable of creating design models, these programs will find niches in the aerospace industry.
However, it is still uncertain if there exists a universal structural design framework that will

be accepted by almost all the U.S. aerospace industry.
This decade has been a remarkable period of evolution of the engineering design pro-

cess, multidisciplinary analysis and, finally, multidisciplinary design optimization. This

report has detailed a few applications of these multifaced topics. It is clear that the previously

"academic" study into structural optimization has grown into a practical methodology that is

giving benefit in the design of aerospace structures. While the tools are still new, and their re-
lationship to the existing management structures, design organizations, engineering and

manufacturing processes are not well understood, it is clear they will be integrated into

standard engineering practice. Perhaps the '90s will result in sufficient progress so that, like

finite element structural analysis, optimization applications will no longer be noteworthy

enough to merit a report such as this.
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